ÔØÈëÖС£¡£¡£ 'S bLog
 
ÔØÈëÖС£¡£¡£
 
ÔØÈëÖС£¡£¡£
ÔØÈëÖС£¡£¡£
ÔØÈëÖС£¡£¡£
ÔØÈëÖС£¡£¡£
ÔØÈëÖС£¡£¡£
 
ÌîдÄúµÄÓʼþµØÖ·£¬¶©ÔÄÎÒÃǵľ«²ÊÄÚÈÝ£º


 
¹ØÓÚNP-hard NP-completeÎÊÌⶨÒåµä¹ÊÓë½âÊÍÖ¤Ã÷
[ 2009/8/5 10:11:00 | By: ÃÎÏè¶ù ]
 
NP ÊÇ Non-deterministic Polynomial µÄËõд£¬NP ÎÊÌâͨË×À´ËµÊÇÆä½âµÄÕýÈ·ÐÔÄܹ»±»ºÜÈÝÒ×¼ì²éµÄÎÊÌ⣬ÕâÀï"ºÜÈÝÒ×¼ì²é"Ö¸µÄÊÇ´æÔÚÒ»¸ö¶àÏîʽ¼ì²éËã·¨¡£
ÀýÈç£¬ÖøÃûµÄÍÆÏúÔ±ÂÃÐÐÎÊÌ⣨Travel Saleman Problem or TSP£©£º¼ÙÉèÒ»¸öÍÆÏúÔ±ÐèÒª´ÓÏã¸Û³ö·¢£¬¾­¹ý¹ãÖÝ£¬±±¾©£¬ÉϺ££¬¡­£¬µÈ n ¸ö³ÇÊУ¬ ×îºó·µ»ØÏã¸Û¡£ ÈÎÒâÁ½¸ö³ÇÊÐÖ®¼ä¶¼ÓзɻúÖ±´ï£¬µ«Æ±¼Û²»µÈ¡£ÏÖÔÚ¼ÙÉ蹫˾ֻ¸ø±¨Ïú $C ¿éÇ®£¬ÎÊÊÇ·ñ´æÔÚÒ»¸öÐг̰²ÅÅ£¬Ê¹µÃËûÄܱéÀúËùÓгÇÊУ¬¶øÇÒ×ܵÄ··ÑСÓÚ $C£¿
ÍÆÏúÔ±ÂÃÐÐÎÊÌâÏÔÈ»ÊÇ NP µÄ¡£ÒòΪÈç¹ûÄãÈÎÒâ¸ø³öÒ»¸öÐг̰²ÅÅ£¬¿ÉÒÔºÜÈÝÒ×Ëã³öÂÃÐÐ×Ü¿ªÏú¡£µ«ÊÇ£¬ÒªÏëÖªµÀÒ»Ìõ×Ü··ÑСÓÚ $C µÄÐгÌÊÇ·ñ´æÔÚ£¬ÔÚ×Çé¿öÏ£¬±ØÐë¼ì²éËùÓпÉÄܵÄÂÃÐа²ÅÅ! Õ⽫ÊǸöÌìÎÄÊý×Ö¡£
NP-complete ÎÊÌâÊÇËùÓÐ NP ÎÊÌâÖÐ×îÄѵÄÎÊÌâ¡£ËüµÄ¶¨ÒåÊÇ£¬Èç¹ûÄã¿ÉÒÔÕÒµ½Ò»¸ö½â¾öij¸ö NP-complete ÎÊÌâµÄ¶àÏîʽËã·¨£¬ÄÇôËùÓÐµÄ NP ÎÊÌâ¶¼½«¿ÉÒÔºÜÈÝÒ׵ؽâ¾ö¡£
ͨ³£Ö¤Ã÷Ò»¸öÎÊÌâ A ÊÇ NP-complete ÐèÒªÁ½²½£¬µÚÒ»ÏÈÖ¤Ã÷ A ÊÇ NP µÄ£¬¼´Âú×ãÈÝÒ×±»¼ì²éÕâ¸öÐÔÖÊ; µÚ¶þ²½Ê**¹ÔìÒ»¸ö´Óij¸öÒÑÖªµÄ NP-complete ÎÊÌâ B µ½ A µÄ¶àÏîʽ±ä»»£¬Ê¹µÃÈç¹û B Äܹ»±»ÈÝÒ×µØÇó½â£¬A Ò²Äܱ»ÈÝÒ׵ؽâ¾ö¡£ÕâÑùÒ»À´£¬ÎÒÃÇÖÁÉÙÐèÒªÖªµÀÒ»¸ö NP-complete ÎÊÌâ¡£
µÚÒ»¸ö NP complete ÎÊÌâÊÇ SAT ÎÊÌ⣬ÓÉ COOK ÔÚ 1971 ÄêÖ¤Ã÷¡£SAT ÎÊÌâÖ¸µÄÊÇ£¬¸ø¶¨Ò»¸ö°üº¬ n ¸ö²¼¶û±äÁ¿£¨Ö»ÄÜÎªÕæ»ò¼Ù£© X1£¬X2£¬¡­£¬Xn µÄÂß¼­ÎöÈ¡·¶Ê½£¬ÊÇ·ñ´æÔÚËüÃǵÄÒ»¸öȡֵ×éºÏ£¬Ê¹µÃ¸ÃÎöÈ¡·¶Ê½±»Âú×ã? ¿ÉÒÔÓÃÒ»¸ö¾ßÌåÀý×ÓÀ´ËµÃ÷ÕâÒ»ÎÊÌ⣬¼ÙÉèÄãÒª°²ÅÅÒ»¸ö 1000 È˵ÄÍíÑ磬ÿ×À 10 ÈË£¬¹² 100 ×À¡£Ö÷È˸øÁËÄãÒ»ÕÅÖ½£¬ÉÏÃæÐ´Ã÷ÆäÖÐÄÄЩ ÈËÒòΪ½­ºþ¶÷Ô¹²»ÄÜ×øÔÚͬһÕÅ×À×ÓÉÏ£¬ÎÊÊÇ·ñ´æÔÚÒ»¸öÂú×ãËùÓÐÕâÐ©Ô¼ÊøÌõ¼þµÄÍíÑç°²ÅÅ? Õâ¸öÎÊÌâÏÔÈ»ÊÇ NP µÄ£¬ÒòΪÈç¹ûÓÐÈ˽¨ÒéÒ»¸ö°²ÅÅ·½Ê½£¬Äã¿ÉÒÔºÜÈÝÒ×¼ì²éËüÊÇ·ñÂú×ãËùÓÐÔ¼Êø¡£COOK Ö¤Ã÷ÁËÕâ¸öÎÊÌâÊÇ NP-complete µÄ£¬¼´Èç¹ûÄãÓÐÒ»¸öºÃµÄ·½·¨Äܽâ¾öÍíÑç°²ÅÅÎÊÌ⣬ÄÇÄã¾ÍÄܽâ¾öËùÓÐµÄ NP ÎÊÌâ¡£
ÕâÌýÆðÀ´ºÜÀ§ÄÑ£¬ÒòΪÄã±ØÐëÃæ¶ÔËùÓÐµÄ NP ÎÊÌ⣬¶øÇÒÏÖÔÚÄã²¢²»ÖªµÀÈÎºÎµÄ NP-complete ÎÊÌâ¿ÉÒÔÀûÓá£COOK Ó÷ÇÈ·¶¨ÐÔͼÁé»ú£¨ Non-deterministic Turing Machine £© ÇÉÃîµØ½â¾öÁËÕâÒ»ÎÊÌâ¡£
ÕýʽµØ£¬NP ÎÊÌâÊÇÓ÷ÇÈ·¶¨ÐÔͼÁé»úÀ´¶¨ÒåµÄ£¬¼´ËùÓпÉÒÔ±»·ÇÈ·¶¨ÐÔͼÁé»úÔÚ¶àÏîʽʱ¼äÄÚ½â¾öµÄÎÊÌâ¡£·ÇÈ·¶¨ÐÔͼÁé»úÊÇÒ»¸öÌØÊâµÄͼÁé»ú£¬ËüµÄ¶¨ÒåץסÁË"½âÈÝÒ×±»¼ì²é" ÕâÒ»ÌØÐÔ¡£·ÇÈ·¶¨ÐÔͼÁé»úÓÐÒ»¸ö"¾ßÓÐħÁ¦µÄ"²ÂÏ벿¼þ£¬Ö»ÒªÎÊÌâÓÐÒ»¸ö½â£¬ËüÒ»¶¨¿ÉÒÔ²ÂÖС£ÀýÈ磬ֻҪ´æÔÚÄÄÅÂÒ»¸öÂú×ãÔ¼ÊøµÄÍíÑç°²ÅÅ·½Ê½£¬»òÊÇÒ»¸öÂú×ãÂÃÐÐÔ¤ËãµÄÐг̰²ÅÅ£¬¶¼ÎÞ·¨ÌÓ¹ýËüµÄ·¨ÑÛ£¬Ëü¿ÉÒÔÔÚ˲¼ä²ÂÖС£Ôڲ³öÕâ¸ö½âÒԺ󣬼ì²éÈ·Èϲ¿·ÖºÍһ̨ÆÕͨµÄÈ·¶¨ÐÔͼÁé»úÍêÈ«Ïàͬ£¬Ò²¼´ÊǵȼÛÓÚÈκÎÒ»¸öʵ¼ÊµÄ¼ÆËã»ú³ÌÐò¡£
COOK Ö¤Ã÷ÁË£¬ÈÎÒâÒ»¸ö·ÇÈ·¶¨ÐÔͼÁé»úµÄ¼ÆËã¹ý³Ì£¬¼´ÏȲÂÏëÔÙÑéÖ¤µÄ¹ý³Ì£¬¶¼¿ÉÒÔ±»ÃèÊö³ÉÒ»¸ö SAT ÎÊÌ⣬Õâ¸ö SAT ÎÊÌâʵ¼ÊÉÏ×ܽáÁ˸÷ÇÈ·¶¨ÐÔͼÁé»úÔÚ¼ÆËã¹ý³ÌÖбØÐëÂú×ãµÄËùÓÐÔ¼ÊøÌõ¼þµÄ×ܺͣ¨°üÀ¨×´Ì¬×ªÒÆ£¬Êý¾Ý¶ÁдµÄ·½Ê½µÈµÈ£©£¬ÕâÑù£¬Èç¹ûÄãÓÐÒ»¸öÄܽâ¾ö¸Ã SAT ÎÊÌâµÄºÃµÄËã·¨£¬Äã¾Í¿ÉÒÔ½â¾öÏàÓ¦µÄÄǸö·ÇÈ·¶¨ÐÔͼÁé»ú¼ÆËãÎÊÌ⣬ÒòΪÿ¸ö NP ÎÊÌâ¶¼²»¹ýÊÇÒ»¸ö·ÇÈ·¶¨ÐÔͼÁé»ú¼ÆËãÎÊÌ⣬ËùÒÔ£¬Èç¹ûÄã¿ÉÒÔ½â¾ö SAT £¬Äã¾Í¿ÉÒÔ½â¾öËùÓÐ NP ÎÊÌâ¡£Òò´Ë£¬SAT ÊÇÒ»¸ö NP-complete ÎÊÌâ¡£
ÓÐÁËÒ»¸ö NP-complete ÎÊÌ⣬ʣϵľͺðìÁË£¬ÎÒÃDz»ÓÃÿ´Î¶¼ÒªºÍ·ÇÈ·¶¨ÐÔͼÁé»ú´ò½»µÀ£¬¶ø¿ÉÒÔÓÃÇ°Ãæ½éÉܵÄÁ½²½×ߵķ½·¨Ö¤Ã÷ÆäËüµÄ NP-complete ÎÊÌâ¡£Æù½ñΪֹ£¬ÈËÃÇÒѾ­·¢ÏÖÁ˳ÉǧÉÏÍòµÄNP-complete ÎÊÌ⣬ËüÃǶ¼¾ßÓÐÈÝÒ×±»¼ì²éµÄÐÔÖÊ£¬°üÀ¨Ç°Ãæ½éÉܵÄÍÆÏúÔ±ÂÃÐÐÎÊÌâ¡£µ±È»¸üÖØÒªµÄÊÇ£¬ËüÃÇÊÇ·ñÒ²ÈÝÒ×±»Çó½â£¬Õâ¾ÍÊÇÖøÃûµÄ P vs NP µÄÎÊÌâ¡£

δÀ´Êýѧ¼ÒµÄÌôÕ½
¼ÆËãÁ¿ÎÊÌâ
ÑîÕÕÀ¥;ÑîÖØ¿¥
Ò»¡¢Ç°ÑÔ
¶þ¡¢¼ÆËãÁ¿
Èý¡¢P Ö®Í⣿
ËÄ¡¢¹Å¿Ë¶¨ÂÉÓë NP-completeness
Îå¡¢NP-complete ÎÊÌâÖ®½üËÆ½â
Áù¡¢ NP-hardness ÓëΧÆå
Æß¡¢½áÂÛ


Ò»¡¢Ç°ÑÔ
ÓÐÊýѧ¼Ò˵¹ý¡¸Ò»¸öºÃµÄÎÊÌâʤ¹ýÊ®¸öºÃ½â´ð¡¹¡£ÒòΪ½â´ðÒ»³ö£¬´ËÎÊÌâÒÑÊǵ½ÁËÖյ㣬¶Ô²»¶ÏÇó´´ÐµÄÈËÃǶøÑÔ£¬ÒѲ»¹¹³ÉÌôÕ½¡£¶øÐµÄÎÊÌâÊÇÔ´Í·»îË®£¬ÄÜ¿ªÍØÐµľ³½ç¡£¶àÊýÈ˶¼²»Ô¸³Á×íÔںõĽâ´ðÖв»¶ÏµÄÍæÎ¶£¬¶øÏ£ÍûÕÒµ½ÐµÄÎÊÌ⣬²»¶ÏµÄ˼¿¼£¬ÃþË÷¡£
´ó¼ÒÔÚ¡¶Êý²¥¡·ÉÏÒÑ¿´¼ûÁ˲»ÉٺõÄÎÊÌ⣬ÓÈÆä×î½ü¿µÃ÷²ý½ÌÊÚ̸µ½µÄ·ÑÂí¶¨Àí£¬¼¸ºÎÈý´óÄÑÌ⣬¶¼ÊǼ«ÓÐȤµÄÎÊÌâ¡£ÓеÄÒÑÓÐÁ˽â´ð£¬ÓеÄÉдý½â¾ö¡£³ýÁËÉÏÃæµÄÌâÄ¿Í⣬ÏñËÄÉ«ÎÊÌ⣨¼´ÈκÎÒ»¸öµØÍ¼Ö»ÒªÓÃËÄÖÖÑÕÉ«¾Í¿ÉÒ԰ѹú½ç·Ö¿ª£©£¬Îå´ÎÒÔÉÏ·½³ÌÐòµÄ¹«Ê½½â£¬¼°ÊýÂÛÉÏÖÊÊý·Ö²¼ÎÊÌ⣬¶¼ÔøÔÚÖ°Òµ¼°ÒµÓàÊýѧ¼ÒµÄÐÄÄ¿ÖÐÕ¼ÓÐÏ൱µÄµØÎ»¡£±¾ÎÄËùÒª½éÉܵÄÊÇÒ»¸ö×î½ü£¨1970Äê´ú¿ªÊ¼£©Ò»ÖÖÐí¶àÊýѧ¼Ò¼°µç×Ó¼ÆËãÆ÷ѧ¼ÒËù¹ØÐĵĴóÎÊÌ⩤©¤NP ÎÊÌâ¡£ NP Ëù´ú±íµÄÒâ˼£¬Äã¿´Íê±¾ÎÄÖ®ºó×ÔÈ»»áÃ÷°×£¬ÏÖÔÚÄã²»·Á¼Çס¡¸NP-hard¡¹Õâ¸öΰ´óµÄ×Ö¡£½«À´Èç¹ûÄã¶ÔijÈË˵ÄãµÄÎÊÌâÊÇ¡¸NP-hard¡¹£¬ËûÒ²Ðí¾ÍÒª¶ÔÄã¹ÎÄ¿Ïà¿´ÁË£¬NP-hard ²»µ«´ú±í hard£¨ÄÑ£©£¬¶øÇÒÊÇ NP µÄÄÑ£¡
NP ÎÊÌâµÄ´ú±íÎÊÌâÖ®Ò»ÊÇÊÛ»õÔ±ÂÃÐÐÎÊÌâ (traveling salesman problem)¡£ÓÐÒ»¸öÊÛ»õÔ±Òª¿ªÆû³µµ½ n ¸öÖ¸¶¨µÄ³ÇÊÐÈ¥ÍÆÏú»õÎËû±ØÐë¾­¹ýÈ«²¿µÄ n ¸ö³Ç¡£ÏÖÔÚËûÓÐÒ»¸öÓÐ´Ë n ³ÇµÄµØÍ¼¼°¸÷³ÇÖ®¼äµÄ¹«Â·¾àÀ룬ÊÔÎÊËûÓ¦ÈçºÎÈ¡×î¶ÌµÄÐг̴ӼÒÖгö·¢ÔÙµ½¼ÒÖУ¿


________________________________________ͼ1 ÊÛ»õÔ±Ö®µØÍ¼£¬A,B,C,¡­ ±í³ÇÃû£¬Êý×Ö±íÁ½³ÇÖ®¼äÖ®ÀïÊý¡£

Èçͼ1ÖУ¬A,B,C,¡­,G ±íʾ 7 ¸ö³ÇÊУ¬¶øÊÛ»õÔ±Òª´Ó A ³Ç³ö·¢Ôٻص½ A ³Ç²¢·ÃÎÊ B,C,¡­,G£¬ËùÓеijǣ¬Ò»¸ö¿ÉÐеķ½·¨ÊÇ

ÎÊÌâÊÇ£ºÕâÊÇ·ñÊÇ×î¶ÌµÄ;¾¶£¿Ò²Ðí¸ü½üÄØ£¿¼ÓÆðÀ´µÄ½á¹ûµÚһ·¾¶×ܳ¤235À¶øµÚ¶þ·¾¶×ܳ¤Îª230À¹ÊµÚ¶þ·¾¶½Ï¶Ì£¬µ«ÊÇ·ñ´æÔÚÒ»¸ö¸ü¶ÌµÄ·¾¶ÄØ£¿Ä¿Ç°µÄ·½·¨½Ó½üÒ»¸öÒ»¸öµÄÅÅ×ÅÊÔ£¬»¹Ã»ÓÐÕÒµ½¸üºÃ¿ÉÒÔѰµÃ×î¶Ì·¾¶µÄ·½·¨¡£¶ÔÆß¸ö³Ç¶øÑÔ£¬¹²ÓÐ 6!=720 ¸öÅÅ·¨£¬Éв»ËãÄÑ£¬µ«ÈôÓÐ 20 ¸ö³Ç£¬ÔòÅÅ·¨¾ÍÓÐ 19! ÖÖ¡£Òò¹ÊÔÚÅÅÁÐ×éºÏÀï n! дÆðÀ´ÇáËÉ£¬µ« 1.21 x 1017 ÊÇÒ»¸ö´óµÃ²»µÃÁ˵ÄÊý×Ö£¬ÈôÿÃëÖÓÅÅÒ»´Î£¬ÒªÅÅ 3.84 x 109 Ä꣨һÄêԼΪ 3.15 x 107 Ã룩£¬¼´Ê¹Ê¹ÓüÆËãÆ÷£¬Ã¿ÃëÅÅÒ»°ÙÍò´Î£¨²»ÈÝÒ××öµ½£©Ò²µÃÖØ×öÈýǧÄê²ÅÄÜÕÒµ½´ð°¸¡£¡¸ÉúÒ²ÓÐÑÄ£¬ÖªÒ²ÎÞÑÄ¡¹£¬Ïë²»µ½ÇøÇø¶þÊ®¸ö³Ç£¬ÒªÈýÊ®¸öÊÀ¼Í²ÅÄÜÕÒµ½´ð°¸¡£
ÓÉÓÚµç×Ó¼ÆËãÆ÷µÄ·¢Õ¹£¬ÓÐÐí¶àÒÔǰÈÏΪÍ÷·ÑʱµÄ¼ÆË㣬ÏñÐÐÁÐʽֵ֮£¬·´¾ØÕ󣬸ߴη½³ÌʽµÄ½â£¬¶¼¿ÉÒÔÔÚ¼«¶ÌµÄʱ¼äÄÚ½â¾ö¡£µ«Ò²Í»È»³öÏÖÁËһЩÐÂÎÊÌ⣬Á¬´óÐͼÆËãÆ÷Ò²ÍûÖ®ÐË̾¡£ÏñÊÛ»õÔ±ÎÊÌ⣬ÒòΪÕÒ²»µ½±ÈÓ²ÅźõúܶàµÄ×ö·¨£¬Ê¹µÃÊýѧ¼ÒÃÇ¿ªÊ¼ÏëÒªÖ¤Ã÷£¬¸ù±¾ÕÒ²»µ½±ÈÓ²ÅźõúܶàµÄ×ö·¨¡£Õâ¸öÖ¤Ã÷ÖÁ½ñÉÐδÕÒµ½¡£¾ÍÏñÒÔǰһ½ÇÈýµÈ·ÖÎÊÌâÒ»Ñù£¬¼ÈÈ»ÕÒÁ˼¸Ç§ÄêÕÒ²»µ½ÓÃÔ²¹æÖ±³ßÈýµÈ·ÖÈÎÒ»½ÇµÄ·½·¨£¬Ò²ÐíÎÒÃÇ¿ÉÒÔÖ¤Ã÷¾ø¶Ô²»¿ÉÄÜÓÃÔ²¹æÖ±³ßÈýµÈ·ÖÒ»½Ç¡£ÏÖÔÚÎÒÃÇÒªÖ¤Ã÷¾ø²»¿ÉÄÜдһ¸ö¼ÆËãÆ÷³ÌÐò´ó´óµÄ¼ò»¯ÊÛ»õÔ±ÂÃÐÐÎÊÌâ¡£ÓëÈýµÈ·ÖÒ»½ÇÎÊÌⲻͬµÄÊÇ£¬Ç°ÕßÊÇÒ»ÖÖÊýѧÉÏµÄºÃÆæ£¬¶øµ±½ñµÄÎÊÌâÓëʵ¼ÊÓÃ;ȴÓÐÃÜÇеĹØÁ¬¡£
ÔÚ´ËÎÒÃÇһֱǿµ÷Ò»¸öºÃµÃºÜ¶àµÄ·½·¨¡£Ô­ÒòÊǶÔÕâÀàµÄÎÊÌ⣬ÄãÈôÄܼÆËã¿ìÒ»±¶»òÊ®±¶¡¢Ç§±¶£¬ÍùÍùÆð²»ÁËʲô´ó×÷Ó㬺ÃÏñ¸Õ²ÅµÄ¶þÊ®³ÇÂÃÐÐÎÊÌ⣬¼´Ê¹¿ìÁËǧ±¶£¬ÈÔÐèÈýÄêµÄ¼ÆËãʱ¼ä£¬¶øÔÙ¼ÓÈý³ÇÁ¢¿Ì¾Í°ÑÕâ¸ö¼ÆËã·¨µÄЧ¹ûµÖÏûÁË£¬Òò´ËÎÒÃÇËùÒªµÄÊǼÆËãÁ¿»ù±¾²ã´ÎµÄ¼õÉÙ£¬Õâ¾ÍÊÇÎÒÃÇÔÚÏÂÒ»½ÚËùÒªÌÖÂ۵ġ£
¶þ¡¢¼ÆËãÁ¿
¼ÆËãÁ¿£¬¹ËÃû˼Ò⣬ÊÇÖ¸½â¾öijÎÊÌâËùÐèÒª¼ÆËãµÄʱ¼ä£¬µ«Òòÿ¸ö¸´ÔÓÎÊÌâµÄ¼ÆËãÍùÍù¶¼Òª¾­¹ýÐí¶à²»Í¬µÄÔËË㣬³ý¼Ó¼õ³Ë³ýËÄÔòÍ⣬»¹Òª°üº¬±È½Ï£¬È¡Êý¾Ý£¬´æÊý¾ÝµÈµÈ£¬Èô×Ðϸ¼ÆËãÆðÀ´£¬Ê®·ÖÀ§ÄÑ£¬Ò»°ã¶¼Ö»»æ³öÒ»Á½¸öÖ÷ÒªµÄÁ¿£¬¼ÓÒÔͳ¼Æ£¬ÒÔÉϽÚÖÐÊÛ»õÔ±ÂÃÐÐÎÊÌâΪÀý£¬ÆäÖ÷ÒªµÄ¹¤×÷ÊǶÔÿһ¸öÅÅ·¨¼ÓÆð×Ü·¾¶Ö®³¤£¬Òò¶Ô n ³Ç¶øÑÔ£¬ÓÐ (n-1)! µÄÅÅ·¨£¬ÎÒÃǾͶ¨Æä¼ÆËãÁ¿Îª O(n!)£¬¼´ÔÚ n! Ö®²ã´Î£¨order ¼´ O Ëõд֮À´Ô´£©Ö®ÄÚ¡£
¾Ù¶þ¸öÀý×Ó£¬ÎÒÃÇÈôÒªÇó n ¸öÊýµÄºÍ»òƽ¾ùÖµ£¬ÔòÆä¼ÆËãÁ¿Îª O(n)¡£µ«ÈôÎÒÃÇÒª°Ñ n ¸öÊý×ÖÒÀ´ÎÅÅÁУ¬ÔòÆä¼ÆËãÁ¿»áÒò×ö·¨µÄ²»Í¬¶øÓÐÏ൱µÄ²î±ð£¬Ò»¸öÖ±½ÓÁ˵±µÄ·½·¨ÊÇ£¬ÏÈÇó³ö×î´óµÄ£¨±È (n-1) ´Î£©£¬ÔÙ´Ó²»ÊÇ×î´óµÄÖмäÇó´Î´óµÄ£¨±È (n-2) ´Î£©£¬ÔÙÇóµÚÈý´óµÄ£¨±È (n-3) ´Î£©£¬¡­¡­Èç´ËÒ»¹²±ÈÁË

´Î¾Í¿ÉÒÔÍê³É´Ë¹¤×÷¡£Òò´ËÎÒÃÇÒÔ O(n2)£¬¼´ÔÚ n2 Ö®²ã´ÎÀ´±í´Ë·½·¨µÄ¼ÆËãÁ¿¡£ÁíÍâÒ»ÖÖ¿ìÅÅ·¨£¬Ï顄 n ¸öÊý·Ö³ÉÈô¸ÉС¿é£¬Ã¿¿éÅźÃÖ®ºóÔÙºÏÆðÀ´£¬Ôò¿ÉÒÔÖ¤Ã÷´ËÖÖ·½·¨Ö®¼ÆËãÁ¿Îª 1 £¬ÒòÅÅÊý×ÖÓëÅÅÃû×Ö£¬µç»°ºÅÂëÏàͬ£¬ÕâÖÖÅÅ·¨ºÜÓÐʵÓüÛÖµ£¬ÀýÈçij´ó³ÇÓÐÒ»°ÙÍò»§£¬Ôò n2=1012£¬¶ø Ö»ÓÐ 2 x 107£¬Æä²î±ðÈý¸öÔÂÓëÒ»·ÖÖÓÖ®±È¡£
Ò»°ã¼ÆËãÁ¿µÄ²ã´Î¶àÒÔϱíÀ´Çø·Ö£¬


ÔÚÉϱíÖУ¬k Ϊijһ´óÓÚ 2 µÄÕýÕûÊý£¬ËüÃÇÖм䶼ÓÐÒ»µÀºè¹µ£¬Óлù±¾²ãÖ®²»Í¬£¬ÔÚ¼ÆËãÆ÷ÀíÂÛÉÏ£¬ÈôijÈËÄÜ·¢ÏÖÒ»¸öÐµķ½·¨£¬½µµÍÒ»¸ö²ã´ÎµÄ¼ÆËãÁ¿£¬ÄÇôËûµÄз½·¨ÓÐ×ʸñ³ÆÖ®ÎªÒ»¸öÍ»ÆÆ£¬¿ÉÒÔ²»ÐàÒÓ¡£±í1 ÓÐÒ»¸ö¶ÔÉÏÏî¸÷Á¿Ö®±È½Ï£¬ÊÇÒÔ¼ÆËãÆ÷ÿÃë×÷Ò»°ÙÍò´Î (106) ¼ÆËãΪԭÔò¡£
n
n
n2 n3 2n 3n n!
10 10-6 10-5 10-5 10-4 10-3 10-3 0.059 0.45
20 10-6 10-5 10-5 10-4 10-2 1(Ãë) 58(·Ö) 1Äê
50 10-5 10-4 10-4 0.0025 0.125 36Äê 2 x 1010Äê 1057Äê
1000 10-5 10-3 10-3 1 16Сʱ 10333Äê ¼«´ó ¼«´ó
106 10-5 1 6 1Ô 105Äê ¼«´ó ¼«´ó ¼«´ó
109 10-5 16Сʱ 6Ìì 3Äê 3 x 109Äê ¼«´ó ¼«´ó ¼«´ó
±íÒ»£ºÒÔ¼ÆËãÆ÷ÿÃë×öÒ»°ÙÍò´ÎʱÍê³É¸÷²ã´Î¼ÆËãÁ¿ËùÔ¼ÐèµÄʱ¼ä£¨ÈôÎÞµ¥Î»£¬¾ùÒÔÃëΪµ¥Î»£©
ÔÚÕâ¸ö±íÖУ¬Ìرð×¢Òâ n3 Óë 2n ÖÐÖ®²îÒ죬һ°ã³Æ 2n Ϊ¼ÆËãÁ¿³ÊÖ¸ÊýÉÏÉý£¬¶ø n3 »ò nk Ö®¼ÆËãÁ¿³Ê n µÄ·½´ÎÉÏÉý 2 £¬¶ÔĿǰ¼°Î´À´µÄ¼ÆËãÆ÷¶øÑÔ£¬Ò»¸ö³Ê·½´ÎÉÏÉýµÄ¼ÆËãÁ¿Ó¦¿ÉÒÔÓ¦¸¶£¬µ«¶ÔÒ»¸ö³ÊÖ¸ÊýÉÏÉýµÄ¼ÆËãÁ¿ÔÚ n Ï൱´óʱÔòºÁÎÞÏ£Íû¡£Òò´Ë¼ÆËãÆ÷ѧ¼ÒËù¼¯Öо«Á¦µÄ·½ÏòÔÚÈçºÎ½«Ò»¸ö³ÊÖ¸ÊýÉÏÉýµÄ¼ÆËãÁ¿ÎÊÌ⣬¼ò»¯³ÉÒ»¸ö·½´ÎÉÏÉýµÄ¼ÆËãÁ¿ÎÊÌâ¡£ÎÒÃǶ¨Òå·²¶ÔÒ»¸öÎÊÌâÖÐ×îÖØÒªµÄ²ÎÊý n ¶øÑÔ£¬ÈôÄÜÕÒµ½Ò»¸ö·½·¨¿ÉÒÔÒÔ·½´ÎÉÏÉýµÄ¼ÆËãÁ¿Íê³É£¬ÎÒÃdzƴËÎÊÌâΪһ P-ÎÊÌ⣨P ΪӢÎĶàÏîʽ Polynomial Ö®µÚÒ»×Öĸ£©£¬°üº¬ËùÓдËÀàÎÊÌâÖ®¼¯ºÏÒÔ P ±íʾ֮¡£
Èý¡¢P Ö®Í⣿
±¾½ÚÖ®ÌâÄ¿Óе㲻ƽ³££¬ÎÒÃǵÄÄ¿µÄÊÇÌáÐѶÁÕß±¾ÎÄÖг£ÓÃÖ®Ó¢ÎÄ´óдµÄ P ÊÇÒ»¸ö·²ÄÜÓà O(nk) ¼ÆËãÁ¿½â¾öÖ®ÎÊÌâÖ®¼¯ºÏ¡£¶ø P Ö®Íâ¼ÓÒ»¸öÎʺÅϵָµ½Ä¿Ç°ÎªÖ¹£¬ÎÒÃÇÉв»ÖªµÀ P Ö®ÍâÊÇ·ñÊÇÒ»¸ö¿Õ¼¯ºÏ¡£
µ½Ä¿Ç°ÎªÖ¹£¬³ýÁËÊÛ»õÔ±ÂÃÐÐÎÊÌâÖ®Í⣬ÒѾ­ÓÐÉϰÙÓÐȤ»òÓÐÓõÄÎÊÌ⣬ÎÞ·¨Óà O(nk) µÄ¼ÆËãÁ¿À´½â¾ö£¬ÎÒÃÇÔÚ´ËÁоټ¸¸öÀý×Ó¡£
ÎÊÌâ1£ºÊÛ»õÔ±ÂÃÐÐÎÊÌ⣨¼×£©
¼´µÚÒ»½ÚËùÊöÖ®ÎÊÌ⣬²»ÔÙÖØ¸´£¬²»¹ý¼Ù¶¨ËùÓоàÀë¾ùΪÕýÕûÊý 3 ¡£
ÎÊÌâ2£ºÊÛ»õÔ±ÂÃÐÐÎÊÌ⣨ÒÒ£©
ÓëµÚÒ»ÌâÖ®Ìõ¼þÏàͬ£¬µ«ÏÖÔÚÓÐÒ»¸ö¸ø¶¨Ö®ÕýÕûÊý B£¬ÎÊÌâÊÇÊÇ·ñ´æÔÚÒ»Ìõ·¾¶Æä×ܾàÀë²»´óÓÚ B¡££¨ÎÊÌâ1ÓëÎÊÌâ2ÔÚ±íÃæÉÏÏàËÆ£¬µ«ÔÚÒÔºóµÄÀíÂÛÉÏÓкܴóµÄ²»Í¬£©
ÎÊÌâ3£º±³´üÎÊÌ⣨¼×£©
ÓÐÎïÌå n ¸ö£¬¸÷ÖØ w1,w2,¡­,wn£¬½ñÓû½«ËüÃÇ·ÖΪ¶þ´ü£¬ÊÔÎÊÈçºÎ·Ö·¨¿ÉʹÁ½´üÖ®ÖØÁ¿×îΪ½Ó½ü¡££¨²»·Á¼Ù¶¨ wi ½ÔΪÕýÕûÊý£¬ÕⲢδʧȥһ°ãÐÔ¡£)
ÎÊÌâ4£º±³´üÎÊÌ⣨ÒÒ£©
ÈçÉÏÌ⣬²¢¸ø¶¨Ò»ÕýÕûÊý B£¬ÊÔÎʿɷñÑ¡³öÈô¸É wi£¬Ê¹ÆäºÍ

ÎÊÌâ5£º°ü×°ÎÊÌâ
ÓÐ n ¸ö¸÷±ðÖØÁ¿Ð¡ÓÚ 1 ¹«½ïµÄÎïÆ·¼°×ã¹»¿ÉÒÔ×° 1 ¹«½ï¶«Î÷µÄºÐ×Ó£¬½ñ½«ÎïÆ·×°ÓÚºÐ×ÓÖ®ÖУ¬¶à¸öÎïÆ·¿É×°ÓÚÒ»ºÐ£¬µ«ÈκÎÒ»ºÐ²»µÃÖØÓÚ 1 ¹«½ï£¬ÊÔÇó×îСµÄºÐ×ÓÊý¡£
ÎÊÌâ6£ºÎè°éÎÊÌâ
½ñÓÐ n ¸öÄк¢×ÓÓë n ¸öÅ®º¢×ӲμÓÎè»á£¬Ã¿¸öÄк¢ÓëÅ®º¢¾ù½»¸øÖ÷³ÖÒ»¸öÃûµ¥£¬Ð´ÉÏËû£¨Ëý£©ÖÐÒâµÄÎè°é£¨ÖÁÉÙÒ»ÈË£¬µ«¿ÉÒÔ¶àÓÚÒ»ÈË£©¡£ÊÔÎÊÖ÷³ÖÈËÔÚÊÕµ½Ãûµ¥ºó£¬ÊÇ·ñ¿ÉÒÔ·Ö³É n ¶Ô£¬Ê¹Ã¿È˾ùµÃµ½Ëû£¨Ëý£©Ëùϲ»¶µÄÎè°é¡£
ÎÊÌâ7£º¿â´æÎÊÌâ
ij²Ö¿âÓÐ D ¸ö´æ²Ö£¬ÅųÉÒ»ÁУ¬½ñÓÐ n Åú»õÎ¸÷¿ÉÕ¼ÓÐÒ»¸ö»ò¶à¸ö´æ²Ö£¬²¢ÒÑÖª¸÷ÅúÎïÆ·´æÈëÓëÌá³öÖ®ÈÕÆÚ¡£ÊÔÎʿɷñ½«¸÷»õÎï´æÈë¿âÀï²»·¢Éú´æ²Ö²»¹»µÄÀ§ÄÑÇÒͬһÅú»õÎïÈôÐèÒ»¸öÒÔÉÏ´æ²Öʱ£¬Æä´æ²Ö±ØÐëÏàÁÚ¡£
ÎÊÌâ8£º
ÒÑÖª a,b,n ÈýÕýÕûÊý£¬ÎÊÊÇ·ñ´æÔÚһСÓÚ n λ֮ÕýÕûÊýʹµÃ

ÎÊÌâ9£º
£¨¼×£© ¸ø¶¨Ò» n λÕýÕûÊý a£¬ÊÔÎÊÆäÊÇ·ñΪÖÊÊý£¿
£¨ÒÒ£© ¸ø¶¨Ò» n λÕýÕûÊý a£¬ÊÔÎÊÊÇ·ñ´æÔÚ m,n >1 ÇÒ a="mn"£¿
ÎÊÌâ10£º·Ö´ÔÎÊÌâ
ÒÑÖª¿Õ¼ä n ¸öµã£¬²¢¼Ù¶¨¸÷µãÖ®¼äÖ®¾àÀëΪÕýÕûÊý£¬ÓÖ¸ø¶¨Á½ÕýÕûÊý K Óë B£¬ÎÊÊÇ·ñ¿É½«´Ë n µã·Ö³ÉСÓÚ K ¸ö²»ÖغϵÄ×Ó¼¯£¬Ê¹µÃÔÚͬһ×Ó¼¯ÄÚÖ®ÈÎÒâ¶þµã¾àÀë¾ù²»´óÓÚ B£¿
ÏÖÔÚ¿ÉÒÔ¿´³öÕâÀàÎÊÌâµÄÒ»°ã½á¹¹ÁË¡£ºÜÏÔÈ»µÄ£¬ÓÐЩÊǼ«ÓÐÓõÄÎÊÌ⣬¶øÓÐЩ¿ÉÒÔת»»³ÉÓÐÓõÄÎÊÌâ¡£ÀýÈçÎè°éÎÊÌ⣬Èô°ÑÄк¢ÓëÅ®º¢»»³É¹¤ÈËÓ빤ͷ£¬»òÒ½ÉúÓ벡È˾ÍÓдóÓÃÁË¡£ÕâЩÎÊÌ⵽ĿǰûÓÐÒ»¸ö¿ÉÒÔÖ¤Ã÷ÊÇÊôÓÚ P µÄ£¬´ó¼Ò¶¼²Â²âËüÃÇ¿ÉÄÜÔÚ P Ö®Í⣬¼´Æä¼ÆËãÁ¿ÊdzÊÖ¸ÊýÔö¼ÓµÄ¡£
ÔÚ60Äê´ú£¬ÒÑÓÐЩÈ˰ÑijЩÎÊÌâ¹éÓÚÒ»ÀàÁË£¬¼´ÊǼ¸¸öÎÊÌâÊÇ»¥ÒÀµÄ£¬ÈôÆäÖÐÖ®Ò»ÈôÊôÓÚ P£¬ÔòÆäËü¼¸¸öÒ²ÊôÓÚ P£¬ÆäÖ¤Ã÷·½·¨´ó¶¼ÊÇÖ¤Ã÷Á½¸ö»¥ÒÀÎÊÌâÖмäÓÐÒ»¸öÖ»ÐèÒªÓà O(nk) ʱ¼äÀ´Íê³ÉµÄÇÅÁº¡£Ö±µ½1971Äê¹Å¿Ë (Stephen A. Cook) ·¢±íÁË¡´The Complexity of Theorem Proving Procedures¡µ²Å°Ñ P Ö®ÍâÔ¼ÎÊÌâ¹é³ÉÁËÈý´óÀ࣬¼´ NP, NP-complete ¼° NP-hard 4 £¬ÏÖÔÚ̸¹Å¿Ë¶¨ÂÉ¡£
ËÄ¡¢¹Å¿Ë¶¨ÂÉÓë NP-completeness
¹Å¿Ë¶¨ÂɵÄÖ¤Ã÷ºÜÄÑ£¬¾ÍÊÇÁ˽âËüÒ²²»ÈÝÒ×£¬ÎÒÃǽ«´Ó¼¸¸ö½Ç¶ÈÀ´¿´Õâ¸öÎÊÌ⣬ÊÔ×ÅÈ¥•ŽâËü¡£ËüµÄÖ÷Òª½á¹ûÊǰÑǰ½ÚÄÇÀàÎÊÌâ´ó²¿¹éÓÚÒ»¸ö½ÏÒ×Ö¤Ã÷µÄ¼¯ºÏ£¬³ÆÖ®Îª NP£¬¶øÔÚ NP ÖÐÕÒµ½Ò»Åú»¥ÒÀµÄÎÊÌâ³ÆÖ®Îª NP-complete ÀಢµÃµ½ÏÂÃæµÄ½á¹û¡£
1. ÈôÓÐÒ»¸ö NP-complete ÎÊÌâ¿ÉÒÔÓà O(nk) ¼ÆËãÁ¿À´½â¾ö£¬ÔòÈ«ÌåµÄ NP ÎÊÌâ¶¼¿ÉÒÔÓà O(nk) Ö®¼ÆËãÁ¿À´½â¾ö£¬¼´
1' ÈôÓÐÒ»¸ö NP-completeÇÒ £¬Ôò P="NP"¡£
ÓÖ»»¾ä»°Ëµ£¬NP-complete ÊÇ NP ÖеÄÄÑÌ⣬NP-complete ½â¾öÁË 5 £¬ NP ¾Í½â¾öÁË¡£µ«ÈôÓÐÒ»¸öÊôÓÚ NP ¶ø²»ÊôÓÚ NP-complete µÄÎÊÌâ½â¾öÁË£¬ÔòÆäËüµÄ NP ÎÊÌâ²»Ò»¶¨¿ÉÒÔ½â¾ö¡£
ʲô½Ð×ö NP£¿NP ÊÇÓ¢ÎÄ nondeterministic polynomial µÄËõд£¬Òâ˼¾ÍÊÇ·ÇÈ·¶¨ÐԵĶàÏîʽʱ¼ä¡£Òª•ŽâÕâ¸ö×Ö¡£ÎÒÃÇÏÈ¿´Ò»¿´ÆÕͨ¼ÆËãÆ÷µÄ×÷Óá£
ÏÖÔÚÒÑÖªÓÃÒ»¸ö¼ÆËãÆ÷£¬Òª½â¾öÊÛ»õÔ±ÂÃÐÐÎÊÌâ·Ç³£À§ÄÑ£¬µ«ÈôÎÒÃÇÓÐÐí¶à¼ÆËãÆ÷ͬʱÓã¬ÊÇ·ñ¿ÉÒÔ¿ìµ½°ÑÔ­ÎÊÌâÔÚ O(nk) ʱ¼äÄÚ½â¾ö£¿¡¸Ðí¶à¡¹£¬²»ÊÇÒ»¡¢¶þ£¬¶àÒ»¶þ¸öÊÇÓÚÊÂÎÞ²¹µÄ£¬¶à°Ù¸öǧ¸öÈÔÊDZ­Ë®³µÐ½£¬²»ÄÜÓкܴóµÄ×÷Óã¬ÒòΪ¾ÍÊÇһǧ¸ö»ú×Ó¿ÉÒÔ·Ö¿ª×ö£¬Ò²×î¶àÖ»ÄÜ¿ìһǧ±¶£¬ÔÚµÚÒ»½ÚÄÚÒÑ˵¹ý£¬°ïÖú²»´ó¡£Òò´Ë¼ÆËãÆ÷ѧ¼ÒÏÈ·ÅÑÛÍûÈ¥£¬¸É´àÔÊÐíÄã¿ÉÒÔÎÞÏÞµÄÔö¼Ó»úÆ÷¡£ÏÖÔÚÎÒÃÇҪעÒâµÄÊDz¢²»ÊÇÓÐÁËÎÞÏÞ¶àµÄ»úÆ÷ËùÓеÄÎÊÌâ¾Í¿ÉÒÔÁ¢¿Ì½â¾öÁË£¬ÒòÓеÄÎÊÌâÓÐÏȺó´ÎÐò£¬ÀýÈçÔÚËãÏÂʽµÄʱºò
[(a1 a2)a3 a4]a5 a6


³ý·Ç»»¸öÐÎʽ£¬·ñÔò±ØÐëÒ»²½Ò»²½µÄ½âÀ¨ºÅ£¬»ú×Ó¶àÁ˲¢²»ÄÜ¼Ó¿ì¼ÆËãµÄËÙ¶È£¬¶øÇÒ»ú×Ó¶àÁË£¬Æä¼äÖ®ÁªÂçǧ±äÍò»¯£¬Ò»¸ö»ú×ÓÒªÓ¦¸¶Ç§Ç§ÍòÍò±ðµÄ»ú×ÓËÍÀ´µÄÐźÅҲƣÓÚ±¼ÃüÁË¡£Òò´ËÎÒÃÇÖ»¼Ù¶¨ËùÓеĻú×Ó¶¼Ö»³ÐÉÏÆôÏ£¬µ¥Ïß×÷Òµ£¬²»×÷ÈκκáÏòÁªÂç 6 £¬Ò²¾ÍÊÇ˵£¬»úÆ÷1¿ÉÒÔ°ÑËüµÄ½á¹û´«¸øËüÏÂÃæµÄ»ú×Ó£¬Ïñ a1,a2,¡­,an ¶øÃ¿Ò»¸ö»ú×ÓÓÖ¿ÉÒÔ°ÑËüÃǵĽá¹û´«¸ø×Ô¼ºµÄ×Ó»ú£¬µ«ÔÚ a1,a2,¡­,an Ö®¼ä²»»¥ÏàÁªÂç¡£ÒÔÊÛ»õÔ±ÂÃÐÐÎÊÌâΪÀý£¬ÈôÓÐ20¸ö³Ç£¬µÚÒ»¸ö»ú×Ó¿ªÊ¼£¬½ÐÏÂÃæ19¸ö»ú×Ó¸÷ȡһ¸ö²»Í¬µÄ³Ç¼°¼ÆËãÓë A ¾àÀ룬¶øÕâ¸ö19¸ö»ú×ÓÓÖ½«ËüËùÇóµÃµÄ¾àÀë½»¸ø×Ô¼ºµÄ18¸ö×Ó»úÁîËüÃÇȡһ¸öÓë×Ô¼º²»Í¬µÄ³Ç¼ÓÉϾàÀ룬Èç´ËÍùÏ£¬ÔÚµÚÊ®´Îʱ£¬µÚÊ®½×¶ÎµÄ»ú×Ó°ÑËüÒÑÈ¡9³Ç¼°×ܾàÀë¸æËßÏÂÒ»¸ö»ú×Ó£¬½ÐËûÃÇÔÙȡһÓëÒÑȡ֮³Ç²»Í¬Ö®³Ç¼ÓÉϾàÀ룬Èç´ËÒ»Ö±×öµ½µÚ19´Î£¬ËùÓзÏߵľàÀë¶¼ÓÐÁË£¬ÔÚʱ¼äÉÏÇóµÃËùÓеľàÀëÊÇ O(n)£¨µ«ÓÃÁË 19! ¸ö¼ÆËãÆ÷£©£¬¹Å¿Ë¶¨Òå·²¿ÉÒÔÔÚ O(nk) ʱ¼äÄÚÓÃÎÞÏÞ¶à¼ÆËãÆ÷½â¾öµÄÎÊÌâΪһ NP ÎÊÌâ¡£
ÏÖÔÚÒª¼ÇסµÄÊÇÓÉÓÚÎÞºáÏòÁ¬Â磬ÔÚËùÓз¾¶µÄ¾àÀë¶¼ÓÐÁËÖ®ºó£¬²¢Ã»Óнâ¾öÊÛ»õÔ±ÎÊÌ⣨¼×£©£¬ÒòΪ²»ÖªË­ÊÇ×î¶Ì£¨Èô¼ÓÒԱȽÏÒÔÇó×î¶Ì¾àÀ룬ÔòÒª O(n!) ¸ö±È½Ï£©£¬Òò´ËÎÒÃDz»ÄÜ˵ÊÛ»õÔ±ÂÃÐÐÎÊÌ⣨¼×£©ÊÇÒ»¸ö NP ÎÊÌâ¡£µ«ÉϽÚÎÊÌâ2£¬ÊÛ»õÔ±ÂÃÐÐÎÊÌâÒÒ£¬ÈκÎÒ»¸öµ¥Ïß¶¼¿ÉÒÔÖªµÀËüµÄ×ܾàÀëÊÇ·ñ²»´óÓÚ B£¬Òò´Ëÿµ¥Ïß¶¼ÓÐÒ»¸ö¡¸Yes¡¹»ò¡¸No¡¹µÄ´ð°¸¡£Ö»ÒªÓÐÒ»¸ö¡¸Yes¡¹µÄ´ð°¸£¬ÎÒÃǼ´ÖªµÀ±¾ÎÊÌâÒѽâ¾ö£¬¹ÊÎÊÌâ¶þÊÇÒ»¸ö NP ÎÊÌâ¡£ÔÚµ¥Ïß×÷ÒµÖУ¬Ã¿¸ö»ú×Ó¿ÉÒÔ×÷Èý¼þÊ¡£
1. Ŀǰ´ð°¸²»Ã÷È·£¬´ó¼Ò¸÷×Ô×÷Òµ¡£
2. ijÏßÒÑÕÒµ½´ð°¸£¬Á¢¿Ì½ÐÍ££¬´ó¼ÒÍ£Ö¹×÷Òµ£¬½âÌâÍê±Ï¡£
3. ´Ë·²»Í¨£¬±¾Ïß²»ÔÙ×÷Òµ£¬µ«²»½ÐÍ££¬±ðÏßÈÔÈ»×÷Òµ¡£
´ÓÉÏÏî×÷Ó㬺ÜÈÝÒ׿´³öÕÒ³ö´ð°¸µÄ¼ÆËãʱ¼ä¼´Ä³Ïß½ÐÍ£µÄʱ¼ä£¬Ò༴ÈκÎÒ»¸öÓС¸Yes¡¹´ð°¸ÏßÖмÆËãÁ¿Ö®×ܺͣ¬Ò²¾ÍÊÇ˵ÕÒµ½´ð°¸¡¸¿ì½Ý·½Ê½¡¹ÉÏËùÐèµÄʱ¼ä¡£Ò×ÑÔÖ®£¬ÔÚÒ»·ÇÈ·¶¨ÐÔ¼ÆËãÆ÷ϵͳÏ£¬Æä×Ó»úÏñÓС¸²Â²â¡¹µ½¿ì½Ý·½Ê½µÄ¹¦ÄÜ¡£ÈôÔÚÈκμÆËã²½ÖèÖУ¬Ä³È˲ÂÁËÒ»¸ö´ð°¸£¬¶ø¼ÆËãÆ÷¿ÉÒÔÔÚ O(nk) ʱ¼äÄڻشð¡¸Yes¡¹»ò¡¸No¡¹£¬Õâ¸öÎÊÌâ¼´ÊÇÒ»¸ö NP ÎÊÌâ¡£ÔÙÒÔÊÛ»õÔ±ÂÃÐУ¨¼×£©¼°Í¼1ΪÀý£¬ÈôÄã²ÂÒ»¸ö·¾¶

ÎÒÃÇÎÞ·¨ÖªµÀ´Ë·ÊÇ·ñ×î¶Ì£¬µ«ÔÚ(B)ÎÊÌâÖУ¬Ò»¸ö¡¸Yes¡¹»ò¡¸No¡¹µÄ½á¹ûÖ»Òª7¸ö¼Ó·¨¾Í¿ÉÒԻشðÁË¡£Òò´Ë¸ù¾ÝÐµĶ¨Ò壬ÎÊÌâ2ÊÇÒ»¸ö NP ÎÊÌâ¡£
ÓÉÕâÁ½¸ö¶¨Ò壬¶ÁÕß²»ÄÑ¿´³öÎÊÌâ2,4,6,7,8,9£¨ÒÒ£©Óë10½ÔΪ NP ÎÊÌâ£¬ÌØ±ðÊÇÎÊÌâ9Ö®£¨¼×£©£¬£¨ÒÒ£©£¬ÆäʵÊÇÒ»ÑùµÄÎÊÌ⣬µ«Èç¹ûÄã²Â¶þ¸ö m,n£¬Á¢¿Ì¾Í¿ÉÖªµÀ a ÊÇ·ñÊÇ mn¡£
¹Å¿Ë¶¨ÀíµÄ¹Ø¼üÔÚÖ¤Ã÷ÈôÒ»ÖÖ½ÐÂú×ãÎÊÌâ (Satisfactability Problem) µÄÀý×ÓÊôÓÚ P£¬ÔòËùÓÐ NP ÎÊÌâ¾ùÊôÓÚ P£¨¼´´ËÎÊÌâÊôÓÚ NP-complete£©£¬Áî , ,-£¨ÇÒ£¬»ò£¬·´£©±íÈý¸ö»ù±¾µÄÂß¼­ÔËË㣨¼´¶Ô0Óë1Âß¼­·ûºÅ¶øÑÔ£¬ , ,³ýÁË1 1=1Ö®Í⣬ £¬ ÓëÒ»°ã´úÊýÖ®¼Ó³ËÏàͬ£©¡£Áî f Ϊһ¸öº¬ÓÐ n ¸öÂß¼­±äÁ¿ (u1,u2,¡­,un) µÄº¯Êý¡£¼ÙÈçÎÒÃÇ¿ÉÒÔÕÒµ½Ò»×é u1,u2,¡­,un£¬Ê¹µÃ f(u1,u2,¡­,un) = 1£¬Ôò f(u1,u2,¡­,un) ³ÆÎª¿ÉÂú×ã¡£ÀýÈç

Ϊһ¿ÉÂú×㺯Êý£¬È¡ u1=u2=u3=1 ¼´¿É£¬µ«

ÓÀΪ 0£¬¹Ê´Ë f Ϊ²»¿ÉÂú×ã¡£
Ö±¾õÉÏ£¬ÕâÀàÎÊÌâ³ýÁ˽« u1, u2,¡­,un Ò»¸öÒ»¸öÒÔ 0,1 ´úÈë¼ì²é 2n ´ÎÖ®Í⣬ÏÔÎÞ¿ì½Ý·½Ê½¿ÉÑ­£¬¹Å¿Ë1971ÄêÖ®ÂÛÎļ´Ö¤Ã÷ÕâÊÇÒ»ÇÐ NP ÎÊÌâ֮ĸ¡£
¹Å¿Ë¶¨Àí£º
Âú×ãÎÊÌâΪ NP-complete¡£
ÏÖÔÚÒÑ¿ÉÖ¤Ã÷ÔÚǰ½ÚÖÐÖ®ÎÊÌ⣬³ýÁËÎÊÌâ1,3,5,9 Ö®Í⣬ȫÊÇ NP-complete ÎÊÌâ¡£
Îå¡¢NP-complete ÎÊÌâÖ®½üËÆ½â
NP-complete ÎÊÌâ¼ÈÕÒ²»µ½¿ÉÐеĽⷨ£¬¶øºÜ´ó²¿·ÖµÄ NP-complete ÎÊÌâ¶¼ÔÚ¼ÆËãÆ÷ÓïÑÔ£¬³ÌÐò£¬µç·Éè¼Æ£¬Í³¼ÆÑ§£¬³ÌÐò×÷ÒµÉÏÓдóÓã¬Òò´ËÖ»ºÃÍ˶øÇóÆä´ÎÕÒÒ»¸ö¿ÉÐеĽüËÆ½â¡£ºÜ¿ÉϧµÄÊÇ£¬ËùÓÐµÄ NP-complete ÎÊÌâËäÔÚ NP µÄ²ã´ÎÉÏÏàÁª£¬ÔÚ½üËÆ½âÉÏÍùÍù¸÷Ð費ͬµÄ½â·¨£¬ÕâЩ½â·¨¶à´ÓÖ±¹Û¶øÀ´£¬ÎÒÃÇÔڴ˾ٶþ¸öÀý×Ó¡£
Àý1
ÔÚµÚÈý½ÚÎÊÌâ5£¬°ü×°ÎÊÌâÖУ¬Èô²ÉÈ¡¡¸ÄÜ×°¾Í×°¡¹·¨£¬¼´ÏÖÓеĺÐ×ÓÈô¿ÉÒÔ×°µÃÏ£¬¾Í²»ÓÃкÐ×Ó£¬Ôò´Ë·¨ËùÐèÓÃÖ®ºÐ×ÓÊý k1 Óë×î¿ÉÄÜÉٵĺÐ×ÓÊý k0 Âú×ã ¡£
Ö¤Ã÷
½ñÁî n ¸öÎïÆ·Ö®ÖØÎª w1,w2,¡­,wn ¹«½ï£¬Òòÿ¸öºÐ×ÓÖ»¿ÉÒÔ×°1¹«½ï£¬¹Ê

ÁíÒ»·½Ã棬¡¸ÄÜ×°¾Í×°¡¹·¨²»¿ÉÄÜÓÐÁ½¸öÒÔÉϵĺÐ×ÓͬʱÉÙÓÚ ¹«½ï£¬¹Ê

±¾ÀýµÃÖ¤¡£
Õâ¸öÎÊÌâµÄ½á¹ûÊÇ˵£¬ÎÒÃÇ´óÔ¼¿ÉÒÔÓá¸ÄÜ×°¾Í×°¡¹·¨×öµÃ×îºÃÇéÐεÄÒ»°ëºÃ¡£¾­¹ý½Ï¸´ÔÓµÄÖ¤Ã÷£¬Johnson ÔÚ1974ÄêÖ¤µÃ£¬µ± n ºÜ´óʱ£¬
(i)
£¬ÇÒ´æÔÚÒ»ÖÖÇéÐÎÄܲúÉú¡£
(ii)

Ò²¾ÍÊÇÓá¸ÄÜ×°¾Í×°¡¹·¨²»»á»µµ½ 70% ÒÔÉÏ£¬µ«¿ÉÒÔ»µµ½¶àÓÃÁË 70% µÄºÐ×Ó¡£
ÊÛ»õÔ±ÂÃÐÐÎÊÌâµÄÒ»¸öÖ±¹Û×ß·¨ÊÇÏÈ·ÃÎÊ×î½üÄǸöÉÐδ·ÃÎʹýµÄ³Ç£¬³ÆÎª¡¸Ïȷýü³Ç¡¹·¨£¬ÒÔͼ1ΪÀý£¬Æä×ß·¨Îª

Rosenkrantz µÈÔÚ1977ÄêÖ¤Ã÷Õâ²¢²»ÊÇÒ»¸öºÜÀíÏëµÄ×ß·¨£¬ËûÃÇÖ¤³öÈô¸÷³Ç¼äµÄ¾àÀëÂú×ãÈý½Ç²»µÈʽ 7 £¬Ôò¡¸Ïȷýü³Ç¡¹·¨Ëù×ßÖ®×Ü³Ì D1 Óë×î¶Ì·¾¶ D0 Ö®¹ØÏµÎª

ÇÒµ± n ºÜ´óʱ£¬¿ÉÒÔÓÐÒ»ÖÖÇéÐÎʹµÃ

ÉÏʽÖÐÖ® [x] ±íʾ´óÓÚ x Ö®×îСÕûÊý£¬ÀýÈç [5]=5, [2.5]=3¡£Òò µ± n ´óʱ¿ÉÒÔºÜ´ó£¬¹Ê D1 ¿ÉÓë D0 Ïà²î·Ç³£Ö®´ó£¬µ«ÔÚͬһƪÂÛÎÄÖ®ÖУ¬Rosenkrantz µÈÖ¤Ã÷ÁíÒ»ÖÖ¸´Ôӵġ¸Ö±¹Û¡¹×ß·¨¿ÉÒÔ´ïµ½ Ö®µØ²½¡£
ÔÚÉÏÃæµÄ¶¨ÀíÖУ¬Èý½Ç²»µÈʽµÄÌõ¼þºÜÖØÒª£¬Èô³ÇÖ®¾àÀëÎ޴˹ØÏµ´æÔÚʱ£¬Sahni ÓëGonzalez ÔÚ1976ÄêÖ¤µÃ£ºÈô NP£¬Ôò²»¿ÉÄÜ´æÔÚÒ»¸öÓÐÏÞµÄ m£¬¼°Ò»¸ö O(nk) ¼ÆËãÁ¿µÄ×ß·¨£¬ÄÜʹÆäÈ«³Ì³¤ D1 ÔÚÈκΠn ʱÂú×ã

¼´ÉÏʽÖÐ m ·ÇµÈÓÚÎÞÏ޴󲻿ɣ¬Ò༴ËùÓÐ O(nk) µÄ×ö·¨¶¼²»ºÜºÃ¡£
Áù¡¢NP-hardness ÓëΧÆå
²»ÊÇËùÓеÄÄÑÌâ¶¼¿É¹é½áΪ NP ÎÊÌ⣬ÏñϵÃÒ»ÊÖ¾ø¶ÔºÃµÄΧÆåÏÖÔÚĿǰµÄÍÆ²âÊDZÈËùÓÐ NP ÎÊÌ⻹ҪÄѵļÆËãÎÊÌ⣬¼´ NP-hard ÎÊÌ⣬NP-hard ÎÊÌâµÄ¶¨ÒåÈçÏ£º
¶¨Ò壺 Èô x Ϊһ NP-hard ÎÊÌ⣬ÔòÈô NP £¬Ôò ¡£
Ò²¾ÍÊÇ˵£¬¼´Ê¹ P="NP"£¬x »¹²»Ò»¶¨ÊôÓÚ P£¬µ« NP, Ôò x ¾ø²»±È NP µÄÎÊÌâÈÝÒס£ÔÚµÚÈý½ÚÖеÄÎÊÌâ1¡¢3²»Ò»¶¨ÊÇ NP ÎÊÌ⣬µ«ÈôÄÜÒÔ O(nk) µÄ¼ÆËãÁ¿½â¾öËüÃÇ£¬Ôò±È½ÏÈÝÒ×µÄÎÊÌâ2Óë4Ò²¿ÉÒÔ O(nk) ½â¾ö£¬¹ÊÈôÎÊÌâ1¡¢3 ÔòÎÊÌâ2¡¢4 £¬ÓÖÒò2¡¢4ÊÇ NP-complete£¬¼´ÍƳö NP="P"¡£ÕâÓë NP-hard Ö®¶¨ÒåÏàºÏ£¬¹ÊÎÊÌâ1¡¢3¾ùΪ NP-hard ÎÊÌ⡣ͬÀíÎÊÌâ5Ò²ÊôÓÚ NP-hard£¬²»¹ýÕâЩ NP-hard ËÆºõ±È NP ÄѲ»Á˶àÉÙ£¬µ«ÏÂÆåÎÊÌâ¿ÉÄÜ±È NP ÎÊÌâÒªÄѵö࣬ΧÆåÎÊÌâ¿ÉÒÔ×÷ÈçϹۡ£
ÎÊÌâ11.£¨Î§ÆåÎÊÌ⣩
ÒÔÆ½³£µÄΧÆå¹æÔòÔÚÒ»¸ö n x n µÄÆåÅÌÉÏÏ£¬¸ø¶¨Ò»¸ö²Ð¾Ö£¨ÏÂÁ˶þ¸ö×ӾͿÉÒÔËã²Ð¾Ö£©£¬Ê×ÏÈ£¬ÊÇ·ñ¿ÉÒÔÈ·¶¨ºÚ×ÓÔÚ×îºÃµÄÏ·¨Ö®Ï£¬Ò»¶¨»áÓ®£¿
Õâ¸öÎÊÌâ²»ÄÜÓÃÒ»°ãµÄ·½·¨Ö¤Ã÷ËüÊDz»ÊÇΪ NP¡£ÒòΪĿǰûÓÐÈËÄܲÂÒ»¸ö±ØÊ¤µÄÏ·¨ÇÒÔÚ O(np) ʱÄÚÖ¤Ã÷ËüÊǶԵģ¬ÒòΪËüÓë¶Ô·½ÈçºÎÓ¦¸¶Óйأ¬¶øµÐ·½µÄÓ¦¸¶ÓÖÓëËû¶ÔÄãÒÔºóµÄÏ·¨µÄÍÆ²âÓйأ¬Èç´ËÍùÏÂ×ߣ¬Ê×ÏÈ·¢ÉúÀ§ÄѵÄÊǼÇÒäÉÏÁÁÁËºìµÆ£¬¼´ËùÐèÒªµÄ¼ÇÒä¿ÉÄܳʷ½´ÎÒÔÉϵĽøÕ¹¡£
Òòÿһ¸ö¼ÇÒäÖÁÉÙÒªÓã¨À´¼ÆË㣩һ´Î£¬·ñÔòÕâ¸ö¼ÇÒä¾Í²»Èç²»Òª£¬Òò´ËÒ»¸öÎÊÌâµÄ¼ÇÒäÈô³ÊÖ¸ÊýÉÏÉý£¬ÔòÆä¼ÆËãÁ¿Òà·Ç³ÊÖ¸ÊýËÆµÄÉÏÉý²»¿É£¬µ«ÈôijÎÊÌâÖ»ÐèÒª·½´ÎÉÏÉýµÄ¼ÇÒ䣬¼´²»Äܱ£Ö¤ËüÖ»ÐèÒª·½´ÎÉÏÉýµÄ¼ÆËãÁ¿¡£
Òò´Ë¼ÆËãÆ÷ѧ¼Ò¶¨ÒåÈý¸öÐµļ¯ºÏ£º
PSPACE={x£ºx Ö»ÐèÒª·½´ÎÉÏÉýµÄ¼ÇÒä }
×¢£ºx ¾ùÖ¸ÎÊÌâ¡£
PSPACE-complete£º
Èô PSPACE,
ÓÖ PSPACE-complete,
ÇÒ ,
Ôò P= PSPACE¡£
PSPACE-hard£º
Èô PSPACE-hard,
ÇÒ ,
Ôò P= PSPACE¡£
×¢ÒâÔÚÉÏʽÖÐ PSPACE-complete PSPACE£¬¼´ PSPACE-complete ÊÇ PSPACE ÖеÄÄÑÌ⣬µ« PSPACE-hard ²»Ò»¶¨ÊôÓÚ PSPACE¡£ Stockmeyer and Meyer ÔÚ1937ÄêÖ¤Ã÷ÁËÒ»¸öÓë¹Å¿ËÏàËÆµÄ¶¨Àí¡£
ÈôÁî ±íʾ´æÔÚÒ»¸ö x£¬ ±í¶ÔËùÓÐµÄ x£¬Q ±í £¬ ÖеÄÒ»¸ö£¬x Ϊ²¼ÊϱäÁ¿0Óë1£¬ÔòÎÒÃÇ³Æ f(Q1 x1,Q2 x2,¡­,Qn xn) ΪһÁ¿»¯²¼ÊϹ«Ê½¡£Èô f ÓпÉÄÜΪ1£¬Ôò f ³ÆÖ®Îª¿ÉÂú×㣬ÀýÈç°ÑµÚËĽÚÖÐÖ®(1)ʽ¸Äд³É

ÔòÉÏʽ²»¿ÉÄÜÂú×㣬Òò¶Ô £¨u3 Ϊ 0 »ò 1£©¶øÑÔ£¬f ²»È«ÊÇ1¡£
Stockmeyer Óë Meyer Ö®¶¨ÀíΪ£º
¶¨Àí£º
¼ì¶¨Ò»¸öÁ¿»¯²¼ÊϹ«Ê½Îª¿ÉÂú×ãÊÇÒ»¸ö PSPACE-complete ÎÊÌâ¡£
µ±ÎÒÃÇÏÂÆåÃæ¶Ô×ÅÒ»Å̲оֳÁ˼µÄʱºò£¬ÎÒÃǵÄÒªÇóÊÇ
¶ÔÎÒÊÇ·ñ´æÔÚÒ»×űØÊ¤Æå¿ÉÒÔ¶Ô¸¶
µÐÈËÈκÎÒ»×ÅÓ¦¸¶Æå
´ËºóÎÒÊÇ·ñ´æÔÚÒ»×űØÊ¤Æå¿ÉÒÔ¶Ô¸¶
µÐÈËÈκÎÒ»×ÅÓ¦¸¶Æå
¡­¡­
ÎÒÊÇ·ñ´æÔÚÒ»×űØÊ¤Æå¿ÉÒÔ¶Ô¸¶
µÐÈËÈκÎÒ»×ÅÆå
ÎÒÓ®ÁË
Òò´ËÕâÍêÈ«ÊÇ , , , ,¡­ Ö®½»Ìæ×÷ÓÃÓëStockmeyer Óë Meyer ¶¨ÀíÖ®¹ØÏµÖÁΪÃÜÇУ¬ Robertson Óë Munro ÔÚ1918ÄêÖ¤µÃΧÆåÊÇÒ»ÖÖ PSPACE-hard µÄÎÊÌ⣬ĿǰÓÐÈ˼ÆË㵽ΧÆå 8 ±ØÊ¤·¨Ö®¼ÇÒ伯ËãÁ¿ÔÚ 10600 ÒÔÉÏ£¬²»ÂÛÈËÄÔ»ò¼ÆËã»úµÄ¼ÇÒä¾øÉÙ²»ÁËÒ»¸öÔ­×Ó£¬¶øÏÖ½ñËùÖªµÄÓîÖæÔ­×ÓÊýÔ¼Ö»ÓÐ 1075¡£ÆåÖ®µÀ£¬´óÒÓÔÕ£¡Òª×öÒ»¸öÏÂΧÆå±ØÊ¤µÄ»úÆ÷ÈËÊÇ̸ºÎÈÝÒ×£¡
Æß¡¢½áÂÛ
ÏÖÔÚÄãÃ÷°×¶þÊ®ÊÀ¼ÍµÄ´óÄÑÌâÁË£¬P=NP£¿Óüòµ¥µÄÓïÑÔ˵£¬¾ÍÊÇÊÇ·ñÄÜÕÒµ½Ò»¸öÖ»³Ê·½´ÎÔö¼ÓµÄ·½·¨È¥½â¾öÂÃÐС¢°ü×°¡¢Îè»áµÈÎÊÌ⡣ƽ·²µÄÎÊÌ⣬ÆÚ´ýÄú²»Æ½·²µÄ½â´ð¡£
1. Gorey, M.R. and Johnson, D.S.¡¶Computers and Intractability-A Guide to Theory of NP-Completeness¡·, 1979, Freeman and Company.
2. Pearl, J.¡¶Hearistics-Intelligent Search Strategies for Computer Problem Solving¡·,1984, Addsion-Wesley.
3. Cook, S.A.¡´The complexity of theorm-proving procedure¡µ, Proc. 3rd Ann. ACM Symp. on Theory of Computing, 1971, 151-158.
4. Jonhson, D.S. et. al.¡´Worst case performance bounds for simple one-dimensional packing algorithms¡µ, SIAM J. Comp., 1974, 299-325.
5. Rosenkrantz, D.J. et. tl.¡´An analysis of several heurishics for the traveling salesman problem¡µ, SIAM J. Comp., 1977, 563-581.
6. Sahin,S. and Gonzalez,¡´P-complete approximation problems¡µ, J. ACM, 1976, 555-565.
7. Stockmeyer, L.J. and Meyer, P.R.¡´Word problems requiring exponential time¡µ, Proc. 5th. Ann. ACM Symp. on Theory of Computing, 1973, 1-9.
8. Robertson,E. and Munro, I. ¡´NP-completeness, puzzles, and games¡µ Utilifas Math., 1978, 99-116.

Ô­Îijö´¦£ºhttp://blog.ednchina.com/yanshen/24599/message.aspx

£½£½£½£½£½£½£½£½£½£½£½

NP-HardÎÊÌâÓÐÈçÏÂ5Àࣺ
1. ·ÓÉÎÊÌ⣺˳ÐòÎÊÌâ(Swquential ordering problem), ³µÁ¾ÎÊÌâ(Vehicle routing problem)¡£
2. ·ÖÅäÎÊÌ⣺¶þ´Î·ÖÅä(Quadratic assignment problem)£¬ÆµÂÊ·ÖÅä(Frequency assignment problem)£¬¹ãÒå·ÖÅä(Generalized assignment problem)£¬Í¼×ÅÉ«ÎÊÌ⣬´óѧ¿Î³Ìʱ¼ä±íÎÊÌâ(University course timetabling problem)¡£
3. µ÷¶ÈÎÊÌ⣺¹¤Ðò³µ¼ä(Jop shop)£¬¿ª·Å³µ¼ä(Open shop)£¬×é³µ¼ä(Group shop)£¬µ¥»úÆ÷×ÜÈ¨ÖØÑÓ³Ùµ÷¶È(Single-machine total weighted tardiness)£¬×ÊÔ´Ô¼ÊøÏîÄ¿µ÷¶È(Resource-constrainted project schedule)£¬ÅÅÁÐÁ÷³µ¼äÎÊÌâ(Permutation flow shop problem)£¬ ´øÐòÁÐÒÀÀµÉèÖÃʱ¼äµÄµ¥»úÆ÷×ÜÑÓ³ÙÎÊÌâ(SMTTPSDST)¡£
4. ×Ó¼¯ÎÊÌ⣺¼¯ºÏ¸²¸Ç(Set covering problem)£¬ ¶àÖØ±³°üÎÊÌâ(Multiple knapsack)£¬ ×î´ó¶ÀÁ¢¼¯ÎÊÌâ(Maximum Independent set)£¬ ´øÈ¨Ô¼ÊøµÄͼÊ÷·Ö¸îÎÊÌâ(Weight constrained graph tree partition)£¬ ±ß´øÈ¨l-»ùÊýÎÊÌâ(Arc-weighted l-cardinality tree problem)£¬ ÈßÓà·ÖÅäÎÊÌ⣬×î´óÍÅÎÊÌâ(Maximum clique)¡£
5. ÆäËûÎÊÌ⣺Ïä×Ó°ü×°(Bin packing)£¬2D-HP µ°°×ÖÊÕÛµþ(2D-HP Protein folding)£¬ ´øÔ¼ÊøÂú×ã(Constraint satisfaction problem)£¬ ×î¶Ì¹«¹²³¬ÐòÁÐÎÊÌâ(Shortest common supersquence)¡£

£½£½£½£½£½£½£½£½£½£½
NPÎÊÌâ¾ÍÊÇÖ¸Æä½âµÄÕýÈ·ÐÔ¿ÉÒÔÔÚ¶àÏîʽʱ¼äÄÚ±»¼ì²éµÄÒ»ÀàÎÊÌâ¡£±ÈÈç˵Êý×éÇóºÍ£¬µÃµ½Ò»¸ö½â£¬Õâ¸ö½â¶Ô²»¶ÔÄØ£¬ÏÔÈ»ÊÇ¿ÉÒÔÔÚ¶àÏîʽʱ¼äÄÚÑéÖ¤µÄ¡£ÔÙ±ÈÈç˵SAT£¬Èç¹ûµÃµ½Ò»¸ö½â£¬Ò²ÊÇÄÜÔÚ¶àÏîʽʱ¼äÄÚÑéÖ¤ÕýÈ·ÐԵġ£ËùÒÔSATºÍÇóºÍµÈµÈ¶¼ÊÇNPÎÊÌ⡣ȻºóÄØ£¬ÓÐÒ»²¿·ÖNPÎÊÌâµÄ½âÒѾ­¿ÉÒÔÔÚ¶àÏîʽʱ¼äÄÚÕÒµ½£¬±ÈÈçÊý×éÇóºÍ£¬Õⲿ·ÖÎÊÌâ¾ÍÊÇNPÖбȽϼòµ¥µÄÒ»²¿·Ö£¬±»ÃüÃûΪPÀàÎÊÌâ¡£ÄÇôPÒÔÍâµÄNPÎÊÌ⣬¾ÍÊÇĿǰ»¹²»Äܹ»ÔÚ¶àÏîʽʱ¼äÄÚÇó½âµÄÎÊÌâÁË¡£»á²»»á½«À´Ä³Ò»Ì죬ÓдóÅ£·¢Ã÷ÁËÅ£Ëã·¨£¬°ÑÕâЩÎÊÌâ¶¼ÔÚ¶àÏîʽʱ¼äÄÚ½â¾öÄØ£¿Ò²¾ÍÊÇ˵£¬»á²»»áËùÓеÄNPÎÊÌ⣬Æäʵ¶¼ÊÇPÀàÎÊÌâÄØ£¬Ö»ÊÇÈËÀàÉÐδ·¢ÏÖÄØ£¿NP=PÂð£¿

¿ÉÏë¶øÖª£¬Ö¤Ã÷NP=PµÄ·;ÊǼèÄѵģ¬ÒòΪNPÎÊÌâʵÔÚÌ«¶àÁË£¬ÒªÒ»Ò»ÕÒµ½¶àÏîʽËã·¨¡£ÕâʱStephen A. CookÕâλ´óÅ£³öÏÖÁË£¬Ð´ÁËһƪThe Complexity of Theorem Proving Procedures£¬Ìá³öÁËÒ»¸öNP-completeµÄ¸ÅÄî¡£NPCÖ¸µÄÊÇNPÎÊÌâÖÐ×îÄѵÄÒ»²¿·ÖÎÊÌ⣬ËùÓеÄNPÎÊÌâ¶¼ÄÜÔÚ¶àÏîʽʱ¼äÄÚ¹éÔ¼µ½NPCÉÏ¡£Ëùν¹éÔ¼ÊÇÖ¸£¬ÈôA¹éÔ¼µ½B£¬BºÜÈÝÒ×½â¾ö£¬ÔòAºÜÈÝÒ×½â¾ö¡£ÏÔÈ»£¬Èç¹ûÓÐÈκÎÒ»µÀNPCÎÊÌâÔÚ¶àÏîʽʱ¼äÄÚ½â¾öÁË£¬ÄÇôËùÓеÄNPÎÊÌâ¾Í¶¼³ÉÁËPÀàÎÊÌ⣬NP=P¾ÍµÃµ½Ö¤Ã÷ÁË£¬Õ⼫´óµÄ¼ò»¯ÁËÖ¤Ã÷¹ý³Ì¡£ÄÇôÔõÑùÖ¤Ã÷Ò»¸öÎÊÌâCÊÇNPÍêÈ«ÎÊÌâÄØ£¿Ê×ÏÈ£¬ÒªÖ¤Ã÷CÊÇNPÎÊÌ⣬Ҳ¾ÍÊÇCµÄ½âµÄÕýÈ·ÐÔÈÝÒ×ÑéÖ¤£»È»ºóÒªÖ¤Ã÷ÓÐÒ»¸öNPÍêÈ«ÎÊÌâB£¬Äܹ»ÔÚ¶àÏîʽʱ¼äÄÚ¹éÔ¼µ½C¡£Õâ¾ÍÒªÇó±ØÐëÏÈ´æÔÚÖÁÉÙÒ»¸öNPCÎÊÌâ¡£ÕâʱCook´óÅ£¾ÍÔÚ1971ÄêÖ¤Ã÷ÁËNPÍêÈ«ÎÊÌâµÄ׿ÏȾÍÊÇSAT¡£SATÎÊÌâÊÇÖ¸¸ø¶¨Ò»¸ö°üº¬n¸ö²¼¶û±äÁ¿µÄÂß¼­Ê½£¬ÎÊÊÇ·ñ´æÔÚÒ»¸öȡֵ×éºÏ£¬Ê¹µÃ¸Ãʽ±»Âú×ã¡£CookÖ¤Ã÷ÁËSATÊÇÒ»¸öNPCÎÊÌ⣬Èç¹ûSATÈÝÒ×½â¾ö£¬ÄÇôËùÓÐNP¶¼ÈÝÒ×½â¾ö¡£CookÊÇÔõÑù×öµ½µÄÄØ£¿

Ëûͨ¹ý·ÇÈ·¶¨ÐÔͼÁé»ú×öµ½µÄ¡£·ÇÈ·¶¨ÐÔͼÁé»úÊÇÒ»ÀàÌØÊâµÄͼÁé»ú£¬ÕâÖÖ»úÆ÷ºÜ»á²Â£¬Ö»ÒªÎÊÌâÓÐÒ»¸ö½â£¬Ëü¾ÍÄܹ»ÔÚ¶àÏîʽʱ¼äÄڲµ½¡£CookÖ¤Ã÷ÁË£¬SAT×ܽáÁ˸ûúÆ÷ÔÚ¼ÆËã¹ý³ÌÖбØÐëÂú×ãµÄËùÓÐÔ¼ÊøÌõ¼þ£¬ÈκÎÒ»¸öNPÎÊÌâÔÚÕâÖÖ»úÆ÷ÉϵļÆËã¹ý³Ì£¬¶¼¿ÉÒÔÃèÊö³ÉÒ»¸öSATÎÊÌâ¡£ËùÒÔ£¬Èç¹ûÄãÄÜÓÐÒ»¸ö½â¾öSATµÄºÃËã·¨£¬Äã¾ÍÄܹ»½â¾ö·ÇÈ·¶¨ÐÔͼÁé»úµÄ¼ÆËãÎÊÌ⣬ÒòΪNPÎÊÌâÔÚ·Çͼ»úÉ϶¼ÊǶàÏîʽ½â¾öµÄ£¬ËùÒÔÄã½â¾öÁËSAT£¬¾ÍÄܽâ¾öËùÓÐNP£¬Òò´Ë¡ª¡ªSATÊÇÒ»¸öNPÍêÈ«ÎÊÌâ¡£¸ÐлCook£¬ÎÒÃÇÒѾ­ÓÐÁËÒ»¸öNPCÎÊÌ⣬ʣϵľͺðìÁË£¬ÓùéÔ¼À´Ö¤Ã÷¾Í¿ÉÒÔÁË¡£Ä¿Ç°ÈËÃÇÒѾ­·¢ÏÖÁ˳ÉǧÉÏÍòµÄNPCÎÊÌ⣬½â¾öÒ»¸ö£¬NP=P¾ÍµÃÖ¤£¬¿ÉÒÔµÃǧÄê´ó½±£¨ÎÒÈÏΪ»¹ÄÜÁ¢¿Ì»ñµÃͼÁé½±£©¡£

ÄÇô¿Ï¶¨ÓÐÈËÒªÎÊÁË£¬ÄÇôNPÖ®Í⣬»¹ÓÐһЩÁ¬ÑéÖ¤½â¶¼²»ÄܶàÏîʽ½â¾öµÄÎÊÌâÄØ¡£Õⲿ·ÖÎÊÌ⣬¾ÍËãÊÇNP=P£¬¶¼²»Ò»¶¨ÄܶàÏîʽ½â¾ö£¬±»ÃüÃûΪNP-hardÎÊÌâ¡£NP-hardÌ«ÄÑÁË£¬ÔõÑùÕÒµ½Ò»¸öÍêÃÀµÄÅ®ÅóÓѾÍÊÇNP-hardÎÊÌâ¡£Ò»¸öNP-hardÎÊÌ⣬¿ÉÒÔ±»Ò»¸öNPÍêÈ«ÎÊÌâ¹éÔ¼µ½£¬Ò²¾ÍÊÇ˵£¬Èç¹ûÓÐÒ»¸öNP-hardµÃµ½½â¾ö£¬ÄÇôËùÓÐNPÒ²¾Í¶¼µÃµ½½â¾öÁË¡£
£½£½£½£½£½£½£½£½
×îºóתһ¸ö¶ñ¸ãµÄ½âÊÍ£¬²»¹ýºÜÐÎÏó£º
NP£ºÔÚÄã×·ÁËÈô¸ÉÃÀÅ®¶¼Ê§°Ü¸æÖÕºó£¬Äã·¢ÏÖÓÐÒ»ÅúÃÀÅ®×·ÆðÀ´ÊÇÒ»ÑùÀ§Äѵģ¬
Èç¹ûÄãÄÜ×·µ½ÆäÖÐÈκÎÒ»¸ö¾ÍÄÜ×·µ½ÆäËûËùÓеÄÃÀÅ®£¬Äã°ÑÕâÑùµÄÅ®È˽Ð×÷NP-Complete¡£P=NP£ºÕâÊÇÒ»¸öÃÀºÃµÄ²ÂÏ룬׷ÃÀÅ®ºÍ¿ÖÁúµÄÄÑ¶ÈÆäʵһÑù¡£
APXÓëRandom£ºNPµÄÃÀÅ®ÄÑ×·£¬ÄãÎÞ·¨ÍêȫռÓÐËý¡£ÄãÖ»ºÃËæ»úµÄÈ¥¿¿½üËý£¬×°×÷ÈôÎÞÆäÊ£»»òÕßÓÃÒ»ÖÖ²ßÂÔ£¬×·µ½ËýµÄÒ»¸öapproximation ratio£¬ÀýÈç50%¡£APX-hard£ºÕâÑùµÄÅ®ÈË£¬Á¬Ò»¸ö¹Ì¶¨µÄ°Ù·Ö±È¶¼²»¸øÄ㣬Äú°¡£¬»¹ÊÇÁíı¸ß¾Í°É¡£

£½£½£½£½£½£½
²¿·Ö×ÊÁÏÕûÀí×Ô£º210µÄ¸öÈ˿ռä

 
 
  • ±êÇ©£ºNP hard complete 
  • ·¢±íÆÀÂÛ£º
    ÔØÈëÖС£¡£¡£

     
     
     

    ÃÎÏè¶ùÍøÕ¾ ÃηÉÏèµÄµØ·½ http://www.dreamflier.net
    ÖлªÈËÃñ¹²ºÍ¹úÐÅÏ¢²úÒµ²¿TCP/IPϵͳ ±¸°¸ÐòºÅ£ºÁÉICP±¸09000550ºÅ

    Powered by Oblog.